Investigations on the Q and CT Bands of Cytochrome c Submonolayer Adsorbed on an Alumina Surface Using Broadband Spectroscopy with Single-Mode Integrated Optical Waveguides.
نویسندگان
چکیده
In this work, we report experimental results on the molar absorptivity of cytochrome c adsorbed at different submonolayer levels onto an aluminum oxide waveguide surface; our data show a clear dependence of the protein optical properties on its surface density. The measurements were performed using the broadband, single-mode, integrated optical waveguide spectroscopic technique, which is an extremely sensitive tool able to reach submonolayer levels of detection required for this type of studies. This investigation focuses on the molar absorptivity at the Q-band (centered at 525 nm) and, for the first time to our knowledge, the weak charge transfer (CT) band (centered at 695 nm) of surface-adsorbed cyt c. Polarized light in the spectral region from 450 to 775 nm was all-coupled into an alumina thin film, which functioned as a single-mode planar optical waveguide. The alumina thin-film waveguide used for this work had a thickness of 180 nm and was deposited on a glass substrate by the atomic layer deposition process. The protein submonolayer was formed on the alumina waveguide surface through electrostatic adsorption from an aqueous buffer solution at neutral pH. The optical properties of the surface-adsorbed cyt c were investigated for bulk protein concentrations ranging from 5 nM to 8200 nM in the aqueous buffer solution. For a protein surface density of 2.3 pmol/cm(2), the molar absorptivity measured at the charge transfer band was 335 M(-1) cm(-1), and for a surface density of 15 pmol/cm(2) was 720 M(-1) cm(-1), which is much closer to the value of cyt c dissolved in an aqueous neutral buffer (830 M(-1) cm(-1)). The modification of the protein molar absorptivity and its dependence on the surface density can most likely be attributed to conformational changes of the surface-adsorbed species.
منابع مشابه
Effects of sodium chloride on the properties of chlorophyll a submonolayer adsorbed onto hydrophobic and hydrophilic surfaces using broadband spectroscopy with single-mode integrated optical waveguides
Sergio B. Mendes University of Louisville Department of Physics and Astronomy 2210 South Brook Street Louisville, Kentucky 40292 E-mail: [email protected] Abstract. In this work, we experimentally investigated the effects of sodium chloride on the molar absorptivity and surface density of a submonolayer of chlorophyll a adsorbed onto hydrophilic and hydrophobic solid/liquid interfaces. T...
متن کاملHighly sensitive spectroscopic detection of heme-protein submonolayer films by channel integrated optical waveguide.
A highly sensitive technique based on optical absorption using a single-mode, channel integrated optical waveguide is described for broad spectral band detection and analysis of heme-containing protein films at a glass/water interface. Fabrication steps and device characteristics of optical waveguides suitable for operation in the wavelength range of 400 - 650 nm are described. Experimental res...
متن کاملOptical Impedance Spectroscopy with Single-Mode Electro-Active-Integrated Optical Waveguides
An optical impedance spectroscopy (OIS) technique based on a single-mode electro-active-integrated optical waveguide (EA-IOW) was developed to investigate electron-transfer processes of redox adsorbates. A highly sensitive single-mode EA-IOW device was used to optically follow the time-dependent faradaic current originated from a submonolayer of cytochrome c undergoing redox exchanges driven by...
متن کاملA simplified broadband coupling approach applied to chemically robust sol-gel, planar integrated optical waveguides.
A new generation waveguide spectrometer with broadband coupling capabilities has been developed. As opposed to previous devices, this attenuated total reflection (ATR) spectrometer is much simpler in design, is more chemically robust, and transmits light down to at least 400 nm. The attenuated total reflection element consists of a single-mode, planar integrated optical waveguide fabricated by ...
متن کاملSolid immersion lens at the aplanatic condition for enhancing the spectral bandwidth of a waveguide grating coupler.
We report a technique to substantially boost the spectral bandwidth of a conventional waveguide grating coupler by using a solid immersion cylindrical lens at the aplanatic condition to create a highly anamorphic beam and reach a much larger numerical aperture, thus enhancing the spectral bandwidth of a free-space propagating optical beam coupled into a single-mode planar integrated optical wav...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The journal of physical chemistry. C, Nanomaterials and interfaces
دوره 113 19 شماره
صفحات -
تاریخ انتشار 2009